Model Predictive Control Based on an LQG Design for Time-Varying Linearizations
نویسندگان
چکیده
We consider the solution of nonlinear optimal control problems subject to stochastic perturbations with incomplete observations. In particular , we generalize results obtained by Ito and Kunisch in [8] where they consider a receding horizon control (RHC) technique based on linearizing the problem on small intervals. The linear-quadratic optimal control problem for the resulting time-invariant (LTI) problem is then solved using the linear quadratic Gaussian (LQG) design. Here, we allow linearization about an instationary reference trajectory and thus obtain a linear time-varying (LTV) problem on each time horizon. Additionally , we apply a model predictive control (MPC) scheme which can be seen as a generalization of RHC and we allow covariance matrices of the noise processes not equal to the identity. We illustrate the MPC/LQG approach for a three dimensional reaction-diffusion system. In particular, we discuss the benefits of time-varying linearizations over time-invariant ones.
منابع مشابه
MPC/LQG for Infinite-Dimensional Systems Using Time-Invariant Linearizations
We provide a theoretical framework for model predictive control of infinite-dimensional systems, like, e.g., nonlinear parabolic PDEs, including stochastic disturbances of the input signal, the output measurements, as well as initial states. The necessary theory for implementing the MPC step based on an LQG design for infinite-dimensional linear time-invariant systems is presented. We also brie...
متن کاملAdaptive Simplified Model Predictive Control with Tuning Considerations
Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملOn the synthesis of time-varying LQG weights and noises along optimal control and state trajectories
A general approach to control non-linear uncertain systems is to apply a pre-computed nominal optimal control, and use a pre-computed LQG compensator to generate control corrections from the on-line measured data. If the non-linear model, on which the optimal control and LQG compensator design is based, is of sufficient quality, and when the LQG compensator is designed appropriately, the closed...
متن کاملAdaptive Tuning of Model Predictive Control Parameters based on Analytical Results
In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...
متن کامل